UNIT- II - Solution of simultaneous algebraic equations & Numerical differentiation and Integration

1. Solve the following system of linear equation by using Gauss sidle method.

a.
$$x + 2y + 3z = 8$$

$$2x + 4y + 9x = 8$$

$$2x + 4y + 9x = 8$$
 $4x + 3y + 2z = 2$

b.
$$x + y + z = 6$$

$$2x - v + 3z = 4$$

$$2x - y + 3z = 4$$
 $4x + 5y - 10z = 13$

2. Solve the following by using Gauss Jordan method.

a.
$$2x + y + z = 10$$
; $3x + 2y + 3z = 18$; $x + 4y + 9z = 16$

$$3x + 2y + 3z = 18$$

$$x + 4v + 9z = 16$$

b.
$$10x - 7y + 3z = 6$$
; $5x - 9y - 2z = 7$; $-6x + 8y - z = 5$

$$5x - 9y - 2z = 7$$

$$-6x + 8y - z = 5$$

Evaluate $\int_0^6 \frac{dx}{(1+2x)^2}$ taking 6 equal sub intervals by Simpson's $\frac{1}{3}$ rule **3.**

Using Simpson's $(1/3)^{rd}$ rule to evaluate : $\int_0^1 \frac{dx}{1+x^3}$ take h = 0.25. 4.

$$\int_0^1 \frac{dx}{1+x^3} \text{ take h} = 0.25.$$

Using Simpson (3/8) th rule evaluate : $\int_0^6 \sqrt{1 - 8x^3} dx \text{ take } n = 6.$ 5.

$$\int_0^6 \sqrt{1 - 8x^3} \, dx \text{ take } n = 6.$$

Using Simpson (3/8) th rule evaluate $\int_{0.2}^{0.7} (\cos(x) - \log(x)) dx$, take h = 0.1 **6.**

Calculate by trapezoidal rule an approximate value of $\int_0^1 e^x dx$ in step of size 0.2. 7.

Find the value of $\int_3^7 (x \log(x) + 1) dx$ by taking 4 strips using Trapezoidal rule 8.

Using Euler's modified method find y(0.1), y(0.2) if $\frac{dy}{dx} = y - \frac{2x}{y}$, y(0) = 1 and h = 0.19.

Using Euler's modified method find y(1.4), y(1.6)10.

$$if \frac{dy}{dx} = 2 + \sqrt{xy}$$
, $y(1.2) = 1.64$ and $h = 0.2$

Using Runge Kutta method of fourth order find: 11.

$$y(0.1)if\frac{dy}{dx} = \frac{xy}{1+x^2}$$
 with initial condition $x_0 = 0$, $y_0 = 1$ taking $h = 0.1$

Using Runge Kutta method of fourth order find y(1.2) if $\frac{dy}{dx} = x^3 + y$, y(1) = 2 take h = 0.2**12.**

Using Euler's method find y (0.2) and y(0.4) if $\frac{dy}{dx} = x^2 + y$, y(0) = 1, h = 0.2 **13.**

Using Euler's method find $y(0.5)if \frac{dy}{dx} = \frac{1}{x+y}$, y(0) = 1 and h = 0.514.

Given that y(x) is solution to $dy/dx = y^3 + 2$, y(0)=3, find the value of y(0.2) from a second order **15.** Taylor series polynomial around x=0.