

(2½ hours)

Total Marks: 75

N. B.: (1) All questions are compulsory.

 (2) Make suitable assumptions wherever necessary and state the assumptions made.

 (3) Answers to the same question must be written together.

 (4) Numbers to the right indicate marks.

 (5) Draw neat labeled diagrams wherever necessary.

1. Attempt any three of the following:

a. What is data structure? Explain the categories in which data structure can be

divided.

Ans: A data structure is a way of storing the data in computerôs memory so that it can be

used efficiently. Formally a data structure is logical or mathematical model of

organisation of data.

Classification of data structures

Data structures can be classified in several ways. These classifications are:

1. Linear and Non- linear data structures

2. Static and Dynamic Data structures

3. Homogeneous and Non-homogenous Data Structures

1. Linear and Non- linear data structures

Linear Data Structure: The elements in a linear data structure form a linear sequence.

Example of the linear data structures are : Array, linked list, queue, stack.

Non-linear data structure: The elements in a Non-linear data structure do not form

any linear sequence. For example, Tree and Graph.

2. Static and Dynamic Data structures

Static Data Structure: Static data structures are those whose memory occupation is

fixed. The memory taken by these data structures cannot be increased or decreased at

run time. Example of static data structure is an Array. The size of an array is declared

at the compile time and this size cannot be changed during the run time.

Dynamic Data Structure: Dynamic data structures are those whose memory is not

fixed. The memory taken by these data structures can be increased or decreased at run

time. Example of the dynamic data structure is Linked List. The size of linked list can

be changes during the run time.

Other data structures like stack, queue, tree, and graph can be static and dynamic

depending on, whether these are implemented using an array or a linked list.

3. Homogeneous and Non-homogeneous data structures

Homogeneous data structure: Homogeneous data structures are those in which data

of same type can be stored. For example, Array, stack, queue, tree and graph.

Non-homogeneous data structure: Non-Homogeneous data structures are those in

which data of different types can be stored. For Example, Linked List.

b. What is an algorithm? What are the characteristics of an algorithm?

Ans: An algorithm can be defined as finite collection of well-defined steps designed to

solve a particular problem.

Characteristics of an algorithm:

1. Input : An algorithm must take some inputs that are required for the solution

of a problem

2. Process: an algorithm must perform certain operations on the input data which

are necessary for the solution of the problem.

3. Output : An algorithm should produce certain output after processing the

inputs.

4. Finiteness: An algorithm must terminate after executing certain finite number

of steps.

5. Effectiveness: Every step of an algorithm should play a role in the solution to

the problem. Also, each step must be unambiguous, feasible and definite.

c. What is meant by complexity of an algorithm? Explain different types of

complexities.

Ans: Complexity is the time and space requirement of the algorithm. If time and space

requirement of the algorithm is more, then complexity of the algorithm is more and if

time and space requirement of the algorithm in less, complexity of that algorithm is

less.

Out of the two factors, time and space, the space requirement of the algorithm is not a

very important factor because it is available at very low cost. Only the time

requirement of the algorithm is considered an important factor to the find the

complexity. Because of the importance of time in finding the complexity, it is

sometimes termed as time complexity.

As the time requirement of the algorithm is dependent upon the input size irrespective

of the other factors like machine/processor, time complexity is measured in terms of

input size n. If the input size to the algorithm is more, the complexity will be more and

if the input size to the algorithm is less, the complexity will be less.

For example, consider an algorithm which sorts an array of size 2000, will definitely

take more time than to sort an array of size 20. Thus, we express the time complexity

in terms of input size n.

As the complexity of an algorithm is dependent upon the input size, still complexity

can be divided into three types:

¶ Worst case complexity

¶ Best case complexity

¶ Average case complexity

Worst Case Complexity: If the running time of the algorithm is longest for all the

inputs then the complexity is called worst case complexity. In this type of complexity,

the key operation is executed maximum number of times. Worst case is the upper

bound of complexity and in certain application domains e.g. air traffic control, medical

surgery, the worst case complexity is of crucial/high importance.

Best Case Complexity: If the running time of the algorithm is shortest for all the

inputs then the complexity is called best case complexity. In this type of complexity,

the key operation is executed minimum number of times.

Average Case Complexity: If the running time of the algorithm falls between the

worst case and the best case then the complexity is called average case complexity.

Average case complexity of an algorithm is difficult to find. To calculate average case

complexity of an algorithm, we have to take some assumptions.

d. Write an algorithm to insert an element into the array and to delete an element

from the array.

Ans: Insertion operation refers to adding a new element in the array. The new element can

be inserted at any position in the array provided that the memory space allocated to the

array is sufficient enough to accommodate the new element. Suppose in an array, there

is a capacity of storing 15 elements and there are already 15 elements stored in the

array, then it will not be possible to accommodate one more element in the array.

Insertion of an element at the end of the array is a very simple operation as no data

movement takes place. On the other hand we want to insert a new element at any

position of the array then the elements starting from insertion position are required to

move to the next position right to make the space for the new element.

Algorithm to insert an element óNewô at kth position in the array óSô of size ónô

where 1<=k<=n:

Step 1: Repeat Steps 2 and 3 For I = n To k

Step 2: Set S[i + 1] = S[i]

Step 3: Set i = i ï 1

 [End Loop]

Step 4: Set S[k] = New

Step 5: Set n = n + 1

Step 6: Exit

Deletion operation refers to removing an existing element from the array. The element

at any position can be removed from the array. Removal of an element from the end of

the array is very simple operation as no data movement is involved in this operation.

On the other hand, removing an element from any other position of the array, all the

elements starting from the location next to deletion position need to be moved one

position left in the array.

Algorithm: Deleting an element from k th position in the array óSô of size ónô

elements where 1<=k<=n:

Step 1: Repeat Steps 2 and 3 For i = k to n - 1

Step 2: Set S[i] = S[i + 1]

Step 3: Set i = i + 1

 [End Loop]

Step 4: Set n = n ï 1

Step 5: Exit

e. What is bubble sort? Sort the following data items using bubble sort method.

14, 33, 27, 35, 10

Ans: The bubble sort makes multiple passes through a list. It compares adjacent items and

exchanges those that are out of order. Each pass through the list places the next largest

value in its proper place. In essence, each item ñbubblesò up to the location where it

belongs.

14 33 27 35 10

In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we

compare 33 with 27.

14 33 27 35 10

We find that 27 is smaller than 33 and these two values must be swapped.

14 33 27 35 10

The new array should look like this ï

14 27 33 35 10

Next we compare 33 and 35. We find that both are in already sorted positions.

14 27 33 35 10

Then we move to the next two values, 35 and 10.

14 27 33 35 10

We know then that 10 is smaller 35. Hence they are not sorted.

14 27 33 35 10

We swap these values. We find that we have reached the end of the array. After one

iteration, the array should look like this ï

14 27 33 10 35

To be precise, we are now showing how an array should look like after each iteration.

After the second iteration, it should look like this ï

14 27 10 33 35

Notice that after each iteration, at least one value moves at the end.

14 10 27 33 35

And when there's no swap required, bubble sorts learns that an array is completely

sorted.

10 14 27 33 35

f. What are the advantages and limitations of an array?

 Advantages

¶ It is use to storing the data of same data type with same size.

¶ It allows us to store known number of elements in it.

¶ It allocates memory in contiguous memory locations for its elements. It does

not allocate any extra space/ memory for its elements. Hence there is no

memory overflow or shortage of memory in arrays.

¶ Iterating the arrays using their index are faster compared to any other methods

like linked list etc.

¶ It can be used to implement other data structures like linked lists, stacks,

queues, trees, graphs etc.

Limitations

¶ Array is the static kind of data structure. Memory used by array cannot be

increased or decreased whether it is allocated at run time or compile time.

¶ Insertion and deletion of elements are very time consuming n array. When a

new element s to be inserted at the middle of the array then, elements are

required to move to create the space for new element. On the other hand, if an

element is to be deleted from the array then, all its preceding elements needs to

be moved to fill the vacated position of the array.

¶ Only homogeneous elements can be stored n the array. Therefore, n case we

want to store the data of mixed type, the array cannot be used.

2. Attempt any three of the following:

a. What is linked list? Write and explain an algorithm to insert an element at the

beginning of the singly linked list.

Ans: Linked L ist

A linked list can be defined as the collection of elements where each element is stored

in a node and the linear order between elements s given by the means of pointers

instead of sequential memory locations.

One way Linked List

In one way linked list, each node is divided in to two parts. The first part of the node

contain the element itself and the second part which is termed as next field or pointer

field contains the address of the next node in the list.

Insertion at the beginning of the Linked List

While inserting the new node at the beginning of linked list, first of all we need to

check whether the linked list is initially empty or not. If the linked list is initially

empty then we will store the Null values in the Next part of New node to be inserted

and the address of the New node will be stored into the list pointer variable Begin as

shown below:

But if the linked list contains one or more nodes, then the address stored in the list

pointer variable Begin will be stored into the Next part of the New node and the

address of the new node will be stored into the list pointer Begin as shown below:

Algorithm:

Step 1 : If Free = Null Then

 Printf ñOverflow: No free space available for insertionò

 Exit

 [End If]

Step 2: Allocate space to node New

 (Set New = Free and Free = Free -> Next)

Step 3: Set New->Info = Data

Step 4: Set New-> Next = Begin and Begin = New

Step 5: Exit

b. Write and explain an algorithm to split a link list into two linked lists.

Ans:

c. What is circular linked list? How to traverse a circular linked list?

Ans:

d. What is the need of two way linked lists? Explain the structure of a node in a two

way linked list.

Ans: In one-way singular linked list we traverse the list only in one direction .e. from

beginning to end. But in certain applications it is required to traverse the list in both

directions i.e. from beginning to end and from end to beginning. This can be

accomplished with the help of two-way linked list or doubly linked list.

In two-way linked list the node is divided into three parts Pre, Info, and Next. The

structure of the node s as shown below:

e. Write a short note on header linked list.

Ans:

f. Explain how to represent a sparse array using an array and a linked list with an

example.

Ans:

3. Attempt any three of the following:

a. Define stack. Discuss the basic operations performed on the stack. Also explain

overflow and underflow conditions of the stack.

Ans: The stack is a data structure in which insertion and deletion of an element takes place

